【AI(人工知能)トライアル日記】Deep Learning(深層学習)におけるGPUの重要性

コラム
セールステック(デジタル営業)
公開日: 更新日:

前回書いたCognitive Toolkit(CNTK)のハンズオンを行っていた際にGPUマシン※の凄さを体感しました。

私はGPUマシンを利用、他の人が実行した環境はGPUを利用しない環境。実際に同じものを実行してみると、 処理時間に大きな差が!

本当にそんなに違うのか、もう一度確認のために、Azure上でCPUオンリー用のVMマシンを構築して比較してみました。

※GPUマシンは、コンピューターの性能を向上し、Deep learning(深層学習)の計算性能向上をサポートします。


まずはGPUマシンの方ですが、前回構築したものをそのまま使用。もう一方の仮想マシンも、すでに環境が用意されているVM(Data Science Virtual Machine for Windows)があるみたいなので、そちらを選択。

VMイメージの詳しい内容はこちら

https://docs.microsoft.com/ja-jp/azure/machine-learning/machine-learning-data-science-provision-vm

サイズは前回のマシンに近いものを選択。

(画像をクリックすると大きな画像を表示します)

あっという間に環境完成!

環境ができたところで、早速速度を比較しようと思いますが、今回はCNTKのチュートリアルにあるCNN(Convolution Neural Network)の「CNTK_201B_CIFAR-10_ImageHandsOn」を利用してその中の学習処理速度を比較してみたいと思います。

まずは、チュートリアルを動かすために、jupyter notebookを起動。

と、その前に、VMの初期状態ではjupyter notebookは無効になっているらしく、まずは、デスクトップ上に置かれている「Jupyter Set Password & Start」ショートカットをクリック!

(画像をクリックすると大きな画像を表示します)

コマンドプロンプトが表示されますので、任意のパスワードを設定。

(画像をクリックすると大きな画像を表示します)

次に、デスクトップ上の「Jupyter Notebook」をクリックして起動。

(画像をクリックすると大きな画像を表示します)

ブラウザが立ち上がり、このような画面が表示されます。

(画像をクリックすると大きな画像を表示します)


1.データ準備

初期画面から「CNTK-Samples-2-0」→「Tutorials」と進むと、様々なチュートリアルがあります。

この中で今回利用するのは、「CNTK_201B_CIFAR-10_ImageHandsOn.ipynb」ですが、そちらを実行する前に、

データを準備する必要があります。ということで、「CNTK 201A Part A: CIFAR-10 Data Loader」をクリック。

こちらを進めていくと、こちらから

https://www.cs.toronto.edu/~kriz/cifar.html

トレーニング用(50,000ファイル)、テスト用(10,000ファイル)の画像をローカルフォルダに取ってきます。これでデータの準備完了。

2.実行

まずはGPUマシンの環境で実行。 「CNTK_201B_CIFAR-10_ImageHandsOn.ipynb」をクリックします。

こちらを上から順に進めて、「create_basic_model」でトレーニング実行。

速い!平均8秒、1秒間に約6000のデータをトレーニングしてます。

(画像をクリックすると大きな画像を表示します)

では、同様にCPUマシンで同じように「create_basic_model」のトレーニング実行

終わらない。。。

あれ?

終わった!平均3分54秒。1秒間に約240のデータをトレーニング。

(画像をクリックすると大きな画像を表示します)

ということは、約25倍もの速さの違いがあることに!!

別のモデルも同様に比較してみましたが、やはり24~25倍の違いがありました。


結論

やっぱりDeep Learning(深層学習)を実行するならGPUマシン!

という結果になりました。


BRIDGE International Corp.

2002年の設立以来、インサイドセールスによる法人営業改革の支援を行ってきた「ブリッジインターナショナル」。日本におけるインサイドセールスのリーディングカンパニーとして、IT、通信・情報、流通、製造などの幅広い業種の企業に対し、「仕組み」「リソース」「道具」などさまざまなインサイドセールスのサービスをご提供し、多くの実績を積み上げてきました。当コラムは、多数のクライアント企業でインサイドセールス組織の立ち上げ・導入支援・MA活用支援などに携わってきたコンサルタントが、これまで蓄積したノウハウを元に執筆したものです。

一覧へ戻る

この記事と合わせてよく読まれています

2018/05/28 カスタマージャーニーを理解する。ジャーニーマップの作り方 2018/04/06 コンサルタントが語る!CRMをBtoBマーケティングで導入する前に知っておきたいこと 2019/05/29 日本でも求められている法人営業改革

Customer Service

お問合せ

【個人情報の取扱いについて】

ご入力いただいた個人情報は、お問い合わせ頂いた内容への回答および対応上必要な手続きにのみ使用し、お問い合せをして頂いた方の同意なく個人情報を第三者に預託・提供することはございません。 本フォームよりご入力頂いた個人情報は、当社の定めるプライバシーポリシーに基づき、適切な安全管理方法により保護しております。 お問い合わせ頂く前に、弊社プライバシーポリシーをお読み頂き、記載されている内容に関しご同意頂く必要があります。

【資料請求・お問い合わせ】

お問い合わせいただいた内容(個人情報を含む)は、当社のプライバシーポリシーに従い、目的に適した形で適切な方法で管理し、お客様の承諾なく第三者に開示・提供することはありません。
また、弊社サービスへの詳細なご相談内容については、必要に応じて別途NDA(機密保持契約)の締結をさせていただきます。

pagetop